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We investigate in this article the use of reduction techniques in air pollution mod-
eling. The reduction of chemical kinetics is performed on the basis of a timescale
analysis and of lumping. Lumping techniques are widely used in air pollution mod-
eling and consist of replacing sompere chemical species by linear combinations
of species. We focus here on the theoretical justification of such techniques. We
propose an algorithm in order to build up lumped species in a systematic way. An
application to three kinetic schemes coupled with diffusion is presented in a monodi-
mensional case. This justifies the way we couple a reduced kinetic scheme with other
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INTRODUCTION

Air pollution models describe the time and space evolution of some given chemit
species in the troposphere [28]. They take into account many phenomena such as chel
kinetics, diffusion driven by turbulence, and advection by the wind field. Both the gas phz
and the aqueous phase are eventually studied.

The numerical simulation of such models is particularly difficult [25, 38, 44]. The chara
teristic timescales of the system (that is, the eigenvalues of the associated Jacobian m:
range indeed from very low values to high ones. This induces the well-known stiffne
of such systems and leads to the use of specific tailored solvers for the time-integra
(implicit solvers rather than explicit ones). We refer for instance to [9, 24, 27, 32, 37] f
benchmarks and for the appropriate numerical schemes. The time integration of chen
kinetics remains, however, particularly time consuming.

An alternative approach amounts to reducing the system by eliminating the fast timesc.
[29]. Many methods have already been proposed [10, 16, 22, 26, 29] mainly for combust
processes. High-order methods can be found in [20, 34].
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We investigate in this article the building of reduced models for chemical kinetics a
the coupling with other processes such as diffusion. The basis of our method is the us
lumped species.

Lumping techniques have already been widely used in air pollution modeling [11, 1
The basic idea is to replace some fast species (species which take part in fast cher
processes) by linear combinations of fast species in the model. For instance, the r
famous lumped scheme is associated with Chapman’s cycle of tropospheric ozone,

0+0, > 03, NOy+hv 2> NO+0, NO+0Os—>NOy+0; (1)

where the reaction 2 is photolytibn{ denotes a photon). Many authors (following [12])
have proposed to replace the speciesNM@d G respectively with the following lumped
species:

NO, = NO+ NO,, Oy = NO, + O3 + O. )

The reason usually invoked is the danger of numerical instability [12] and the search
mass conservation of some groups of atoms (here NO ahdT®e lumped species are,
however, usually proposed without any further justification.

The aim of this article is to present a theoretical framework for such techniques anc
propose some algorithms to build the underlying reduced model in an appropriate way.
“fast” numerical simulation of such reduced models needs either specific solvers we do
investigate here or the use of preprocessed tabulations.

We present briefly in the first section some general results concerning reduction and lu
ing. The key point is that the reduced system associated with chemical kinetics (OD c:
can thereafter be used for the coupling with slow processes such as diffusion, emissi
and dry deposition. The use of lumped species is an alternative to the study of linear
systems, which is the kernel of the algorithms CSP [17] and ILDM [22]. The theoretic
aspects can be found elsewhere for the case of ordinary differential equations [29] anc
the extension to partial differential equations [31].

We present in the second section an algorithm for determining the lumped schem
a systematic way. This is highly linked with an appropriate partitioning of species a
reactions. The study of the eigenvalues of the Jacobian matrix provides a way for valida
a priori such a partitioning.

Inthe third section we apply the previous algorithms to three atmospheric kinetic schet
in a monodimensional model including diffusion, emissions, and dry deposition.

1. REDUCING AND LUMPING TECHNIQUES

1.1. Slow-Fast Systems

Chemical kinetics can be characterized by the wide range of timescales: some reac!
occur very quickly (fast dynamics), while others ones associated with large timescales (s
dynamics). This can be mathematically described by the singular perturbation theory [.
The main feature is that all the trajectories in the phase space of concentrations conv
to a unique curve after a fast transient phase, whatever the initial conditions. The evolu
can thereafter be approximated by a slow motion along this low-dimensional manifold.
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FIG. 1. Dynamical behaviour of chemical kinetics.

Let (x, y) be the set of concentrationsandy being two subsets of concentrations. We
have plotted in Fig. 1 such a behaviour by assuming that the low-dimensional manifold n
be defined by the algebraic constraynt= h(x). Reduction procedures are the search fou
the simplified model onto this manifold. The classical tool which is usually invoked is tt
so-called Tikhonov theorem [33].

THEOREM1.1. Let us consider the evolution system

dx d
T = fo06Y) +e a0 Y), ey = o, Y) + £Gi(x, V), 3)
with x € R"P and y e RP subject to the initial conditions(®) = X and y0) = yp. ¢ is
a small positive parameter describing the ratio of fast timescales on slow ones.
Fort > Othe initial modek3) can be approximated up to first-orderérby the so-called
reduced model

dx _

dt fO(Xv y) +¢ fl(X, y)’ 0 = gO(X, Y)» (4)

where0 = gop(X, y) definegunder some classical assumptions we do not precisé here
function y= h(x). The initial conditions associated witd) are the asymptotic points of
the so-called inner layex(0) = o and Y0) = h(Xp).

The equation describing the low-dimensional model can then be easily found by apply
the well-known quasi-steady state assumption (QSSA) for spgctbst is, by replacing
the differential equation foy with the algebraic constraigg(x, y) = 0.

Systems arising in practice do not have, of course, the nice form (3). The key point
applying such techniques is then to find an appropriate partitioning in sipang fast ¥)
species. We will now explain this point further in the next sections first by taking into accot
only chemical kinetics and then by coupling it with other processes supposed to be slo

1.2. D Case
1.2.1. Theory

We assume here that all species can be viewed as fast ones in a first approach an
illustrate in this section the difficulties induced by a brute-force use of theorem 1.1. Let
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consider a dynamical system written under the general form

dx d
i Mgo(X, y) + & f1(X, y), 8d_{ = go(X, ¥) + €01(X, y), (5)

wherex € R""P andy € RP stand for two subsets of chemical concentrations,saischs
before a small positive parameter defined as the ratio of timescales. The key poinkis th
andy are concerned by fast dynamics given respectivelivily andgo. M is a matrix of
dimension(n — p) x p describing the fast coupling betwerrandy. For more clarity, we
have assumed that the fast dynamics are linearly coupled thidu@luch an assumption is
actually met in practice for chemical kinetics due to the stoichiometric form of the chemi
production term (see [8, 36]). This is somehow an assumption which is useful for clat
but not necessary for the kernel of the theory.

The key point in order to reduce this sytem is to eliminate the fast coupling betwe
species. One possible procedure is to lump species by replaciith

u=x— My. (6)

In the new basisu, y), we have easily

du

d
o = 110 = Mg, ed—f = 0o() + 910, 7)

where the functiond(.), 01(.), andgg(.) are computed au + My, y). u appears now as
a slow variable and a QSSA procedure can be appligditothis basis. This leads to the
algebraic constraint

go(U+ My, y) =0. (8

This defineg as a function ofi under some classical hypothesis, mainly that the followin
matrix is nonsingular along the constraint (8)

g0 . 9do
— + —M. 9
ay + aX ©

Such an assumption is indeed necessary and sufficient for justifying the existence
reduced model withp algebraic constraints (see [8, 29], for instance). Let us notice that (
is exactlygop(x, y) = O withu = x — My.

We now go back to the initial basis and we find

dx _ dgo g0, .\ " 0G0 _
a = (I +M <a_y + WM) W)(fl() —Mai(1)), Go(X,y) =0. (10)

We do not use (10) in our numerical tests, because this would require the computation
rather complicated local projection matrix. Another way we advocate is to solve the redu
system in the lumped basis, that is, (7).
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1.2.2. Applications to Air Pollution Modeling

We first apply this framework to gas-phase air pollution models in order to justify tt
use of the so-called “lumped species” [12].
We study a kinetic scheme whose fast part is given by the so-called Chapman cycle

O+0, -5 03, NOz+hv -2 NO+0O, NO+O;—NO,+0, (11)

We suppose therefore that reactions 1, 2, and 3 are fast and that all the other reactions i
kinetic scheme are slow. The other species are associated with a vector of conceatrati
and are slow species. We write, for instance,

NO NO,
o [5] =[],

where NO stands, for instance, for the symbol of the chemical species and for the con
tration as well. The ODE giving the time evolution of species is

dc

d d
5 =a0), ety ef(), e = gox.y) +equ().  (13)

dt dt
wherea(.), f1(.), andg;(.) stand for the slow reaction terms and are computéd,at, y).
The fast reaction terms are

fo(x, y) = {_wwzjw‘:?’], (X y) = [wz _wﬂ, (14)

1 w2 — w1

where stands for the fast reaction rate associated with the reaictiod is given by the
law of mass action. We recover easily the former formalism by defiMnas

M= [j _0]. (15)

The lumping we have to use is then

(16)

Ly [ NO+NO
= Y=1os4+ N0, + 0"

which is exactly the classical lumped scheme.

Remark. Lumped species may be defined in another way in atmospheric context. A
other purpose is to lump slow species (typically volatile organic compounds) accordi
to structural chemical relations. A simple example is provided by the following kinet
scheme:

X4+Y: =5 P+P, X4Ys—=5 P+P, 17)

We suppose that the law of mass action may be apgliésithe kinetic constant for both
reactions.
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If we are only interested in the produtbut not in the by-product®; and P,, we can
define the lumped speci&s= Y; + Y,. The evolution of the concentrations ¥f Y, and
P is now (with obvious notations)
dx dy dp
dt ~ dt T TH (18)
The drawback is that we are not able to follow the evolutiol.c&ndY,.
This approach has nothing to do with a dynamical behaviour and we do not focus on
approach. We refer, for instance, to [3, 23] for a deeper understanding. Let us notice
such a strategy is usually known as “lumping” in the sense of [18, 19, 41, 40].

1.3. Coupling with Slow Processes
1.3.1. Theory

We consider now the coupling of a given kinetic scheme with a slow pracegssmay
be, for instance, a diffusion-advection term (PDE before spatial discretization) or an O
term obtained by applying the method of lines. We refer to [31] for more details.

We keep the same form as before for the chemical production and lossTieamd Ty
are the components df for x andy. The evolution of the vector of concentratianis now
given by

dz
i X2 +eT(2), (19)
where
X Mgo(2) + ¢ f1(2)} [Tx(Z)]
= B = 5 T = . 20
‘ M X { 0@ +ea | 27 o (20)

The simplest way to proceed is to put the system into the basis of lumped species unde
form

du

d
FTi f1() + Tx() = M(@:() + Ty (), Sd%/ = go() +&(() + Ty()), (21)

where all functions are computed@t+ My, y). This leads easily to the reduced system

du

i f1() = Mg () + Tx() = MTy(), 0= go(u+ My, y). (22)
The key point is that the algebraic constraint is a local pre y(u) and isthe same one
as in the OD caseLlet us notice that the terf has been modified through the lumping,
because we have also to compUiigu + My, y) — MTy(u + My, y).

1.3.2. Applications to Air Pollution Modeling

We discuss now some simplifications that may occur in the case of air pollution modeli
Let us consider the case of a monodimensional reaction—diffusion PDE with Neum:
boundary conditions describing the time evolution and the vertical profile of some tre
gases. The vector of concentrationz is R". We neglect the horizontal advection by the



360 SPORTISSE AND DJOUAD

wind field. Let us notice that this is quite realistic for some air pollution episodes. For tl
species we have, for instance,

% =div(kVz) + xi (2 (23)

subject to the following boundary conditions:

e Atthe groundk®% = —E;(t) + vepZ -
e Atthe top of the monodimensional colurrictz = 0.

xi is the chemical production and loss term for speki®ée take acalarturbulent diffusion
T = kA, wherek is the vertical turbulent diffusivity (the same value for all species) an
A stands for the Laplacian operator. Dry deposition and emissions are added as boun
conditions at the ground whetg is the emission vector andhe, is the vector of dry
deposition velocitiesj—v stands for the normal derivative.

In the same way as before we will partition the vectBrandvgep according to

E
= { X} Udep = [Udepx} (24)
Ey Udepy

Let us investigate the effect of lumping. For the diffusive gait) = kAzwe have easily
Tx(u+ My, y) = kAu+KkMAy, MTy(u+ My, y) =KkMAy (25)
and then
Ty(u+ My, y) — MTy(u + My, y) = kKAu. (26)

This is exactlyTy (u, y) and we do not have to lump the diffusive part. On the contrary, th
terms issued from boundary conditions have to be lumped since

(Tx — MTy)(U +My,y)=—(Ex—M Ey) =+ Vdep, U + (Udepo - Mvdepy)ys (27)

whereT (2) = k% stands now for the boundary operator.
The reduced model is then in the lumped basis

au
§=kAU+ fi(u+ My, y) — Mgi(u+ My, y), 0=go(u+ My,y) (28)

and subject to the following boundary conditions:

o Atthe groundks = —(Ex — MEy) + vdep,U + (vdep, M — Mugep, )Y
o At the top of the monodimensional colum(‘g;‘v‘ =0.
We have therefore to deal carefully with boundary conditions.

We will now propose an algorithm in order to build lumped species for any kineti
schemes and apply it to some monodimensional test cases arising in air pollution mode
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2. AN ALGORITHM FOR BUILDING LUMPED SCHEMES

The main objective of this section is to describe an algorithm for the automatic compu
tion of reduced models. This is done by selecting the fast species concerned with the Q.
approximation and by searching for the lumped species.

2.1. Partitioning Slow and Fast Dynamics

Let us consider a kinetic scheme describing the interaction species throughm,
chemical reactions. Letbe the vector of concentrations. The time evolution due to chemic
production and loss is then

dz ow
—=Sw, J=S|—], 29
dt < 82) (29)

whereSis the constant stoichiometric matrix< n,, w € R™ is the vector of reaction rates,

andJ is the Jacobian matrix of the system. We are going to partiliamto the sum of a
fast and a slow part as

dw ow
J=J+ J, JO—%(&): Jl—&<5)7 (30)

whereS andS, are respectively the fast and slow stoichiometric matricessaads) + S.
Provided that the rank of the fast part of the Jacobian mafris equal to the number of
fast species (eventually after a lumping of species if necessary), the algebraic const
Sw(2) = 0 can be directly solved in order to determine the fast species as a function of
slow ones.

We describe hereafter the filtering techniques we use to obtain a well-partitioned syst
The key point is that we partition the stoichiometric matrix.

2.1.1. Fast Species

Many criteria can be used in order to detect fast species. Partitioning with respec
the magnitude of diagonal elements of the Jacobian matrix is usually proposed (see
instance, [35, 43]). This can lead, however, to a wrong partitioning due to the nondomina
of the diagonal. Let us recall that such a procedure is often used for hybrid ODE solv

[9, 32, 43].
The second criterion consists of the evaluation of the scaled ratio
i [P —GCil
| = 31
QssA= B¢ (31)

for each specieis P, andC; are the production and loss terms of speciefose evolution
is written under the form

dz
o P —-GC. (32)

If I(‘QSSAis less than a prescribed small parameter (10-2), then the specidss considered

a fast one and the QSSA approximatid® ¢ C; ~ 0) can be applied. Otherwise it is
considered slow and the corresponding fast stoichiometric coefficients are set equal to :
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We advocate such a criterion because it is deeply linked with the dynamical behaviou
the system, while the lifetime may be constant during the whole time integration for line
systems.

2.1.2. Fast Reactions

To select the fast reactions associated with speciegny criteria have already been
proposed. We can perform a scaling of the vector of reaction «afes in [36]). Turanyi
et al. have proposed the following ratio [35] for the reactipn

1 da)j

wj dt

—,
Jjj

8j = (33)
whereJj; is the diagonal element of the Jacobian maffixassociated with the linearized
system for the time evolution of reaction rates,

dw ow
99 _ gy 3= (2%)s 34
T <az> (34)

ands; is the ratio of the transition time (inner layer) to the characteristic time of the reactic
As a consequence of classical results in linear algebra [42] the maifriaedJ" have the
same eigenvalues except eventually 0 (compare Egs. (29) and (34)). Thajises a good
description of the slow—fast structure of the species system.

Such criteria, however, do not give a suitable partitioning. The simplest way to veri
this is a computation of the resulting fast Jacobian eigenvalues, which are not exactly
large negative eigenvalues of the Jacobian malr{gee next section). The reason is that
such procedures are linked with aipriori partitioning of the reactions, independent of the
coupling with species.

Let us consider astspecies whose equation is in the form

dz
EZZSJ‘UJ' (35)
=1

To recover a partitioning among a linear combination of large positive terms (eventue
balanced) and of small positive terms, we compute for every reagtibe relative contri-
bution,

)/-i _ |S] |wj
) ZEL1|SK|U)k

The reactionj is said to have a slow contribution for the evolution of spe'ciie’és;/ji is less
than a prescribed small parameter{ 10-2). Let us notice that such a criterion has already
been proposed in [15, 17] for other purposes.

To conclude, we compute the fast stoichiometric ma&iin the following way:

(36)

e For a slow speciels we set(S);; = O forall j.
e For a fast specieis we set(§)ij = 0 if yji < ¢g; otherwise(S)ij = §;j.
2.2. Lumped Species

If the number of fast species is greater than the rank of the fast Jacobian daathirn
a lumping of species is necessary for solving the QSSA algebraic constraints. Otherw
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the resulting system is underdetermined. We have then to define a new set of slow spe
which for the contribution of fast reactions is zero. In practice we have to search for a bz
of the left kernel of the matrixg. The choice of this basis is completely free and does nc
have any impact on the accuracy of the reduced model.

The algorithm we propose is then the following one:

1. Select fast species with the use of (31).

2. Select fast reactions for fast species with the use of (36).

3. Computes,.

4. Compute a basi@, ..., v) of the left kernel ofS, wherer = n — rank(S). The
vectorsy; are inR" and satisfy; - S = 0.

5. Definer lumped species as follows for=1, ..., r,

Ui =vj - Z, (37)
where- denotes the usual scalar producR5t

It is easy to check that; is not related to fast dynamics since

dy _ ~ dz _
at =V at T

The key point, of course, is that the left kernel &f is exactly the left kernel ofly =
80(38—“2’). Such a result can be mathematically proved under some axiomatic conditions
chemical kinetics (see [29, 39]). It is unfortunately impossible to give a proof for ar
kinetic schemes such as those arising in atmospheric chemistry, since the reactior
general are not elementary ones (that is, they do not necessary describe collisions bet
molecules). Let us point out that the partitioningaigriori a local one. Our numerical
tests confirm, however, that the partitioning is constant over transient phases relate
changes in photolytic chemistry (that is, at sunrise and sunset). This is a particular fea
of atmospheric chemistry in which temperature does not play a crucial role, in contras
combustion. This confirms that we can search for a global reduced model as given |
singular perturbation form rather than by a local reduced model as given by methods <
as ILDM and CSP.

vi - So. (38)

2.3. Validation
We have applied the previous algorithm to three different kinetic schemes:

1. The so-called “Jacob scheme.”
2. The so-called “Kim—Cho scheme” [14].
3. The so-called “Ozone 16 scheme” [2].

The main characteristics of these models can be found in Table | and in the Appendix.
us note that they only include gas-phase chemistry. We refer to the references for a r
detailed description of the kinetic schemes.

The accuracy of the reduced models depends on the validity of the partitioning.
performa priori a validation of the partitioning by the following method. We compare thq
strictly negative eigenvalues of the fast pdstand the most negative eigenvalues of the
JacobianJ. The other eigenvalues a§ are 0 and are associated with the less negativ
eigenvalues ofl.
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Let us point out that we do not have to compute the Jacobian matrix for applying c
algorithm, in contrast to techniques such as ILDM and CSP, which are based on the stuc
the linearized system (which is much more appropriate for systems with a local definiti
of the reduced system, as those arising in combustion). In this section, we compute
Jacobian matrix for checking the validity of the partitioning.

The key point is that the large negative eigenvalue® ofust be preserved (according to
[4]). Letr be the number of large negative eigenvalued.dfet {A; (t,)}i and{A s (tn)}i be
the set of eigenvalues (in increasing order) respectivelydandJ at timet, = nAt. The
average relative error err has been computed in Table Il through

1T a1 () = Ai ()]
ermr= ZZ (—> (39)

n—1 i—1 Mt

whereN is the number of time steps. See the next section for the valuas afid N.

The results for the three kinetic schemes can be found in Tables I, IV, and V. We he
only plotted the results at a given timte=£ 0), but the same holds for any time (with different
values due to the nonlinearity of the system).

The resulting lumping is given in Table VI. We have given only lumped species defin
by linear combinations of fast species and we have excluded pure slow species. We rec
in these examples the usual lumped species up to some minor algebraic manipulat
[11, 12]. The package LSODE [13] has been used to perform the integration. Let us re
that p is the number of QSSA species (given by the QSSA index) and(dgnks the
number of algebraic constraints to be used. The number of such lumped spegies is
rank(Jo).

Remarl{Comparison with the study of linearized systems]. Let us notice that we cor
pute the left kernel of the fast part of the Jacobian maigixhat is, the left kernel 0%. If
the partitioning of dynamics is constant, this gives constant lumping vectors.

In contrast, methods based on the study of the Jacobian matrix, such as ILDM and C
compute left eigenvectors df.

3. REDUCED MECHANISMS IN A MONODIMENSIONAL CASE

3.1. Strategy
We have performed some numerical tests with the previous algorithms:

1. We perform first a preprocessed computation in the OD case in order to deriv
lumped scheméu, y). This does not require computation of the Jacobian matrix.

2. We use this lumped scheme to solve the kinetic scheme in the 1D case. We use
differential-algebraic solver LIMEX [5, 6] to solve the reduced system given by Eq. (2
and thereafter we go back to the initial basis of spe¢iey). As pointed out above we
advocate this strategy in order to avoid the computation of complicated projection matric

To assess the accuracy of the reduced models we compute with LSODE[L3] @1,
Newton iterations) a time-accurate solution which is obtained through the method of lir
and finite differences for the 1D case. This reference solution is defined by the original mo
The reduced solution is computed with LIMEX. In both solvers the Jacobian matrices
computed with finite differences. As the units are molecules per cubic centimeter, we |
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TABLE |
Kinetic Schemes

Jacob scheme Kim—Cho scheme  Ozone 16 scheme

Species 10 15 16

Reactions 9 21 12

Units Molecules cm?® ppm Molecules cm?
TABLE Il

Mean Relative Error for Filtering (err)

Jacob scheme  Kim—Cho scheme Ozone 16 scheme

6.2E-4 0.1E-2 4.2E-2

TABLE 11l
Eigenvalues for Jacob Scheme

Ai —-18.34 -0.72 —-409E-2 —-242E-2 —-4.0E-7
Afi —1834 -0.72 —4.89E-2 —-242E-2 0
TABLE IV

Eigenvalues for Kim—Cho Scheme

Aj —-20.88 —-896 —-3.74 —532E-2 —-8.94E-3 —1.05E-3
Ari —20.87 -8.95 -—-3.74 -532E-2 -891E-3 0
TABLE V

Eigenvalues for Ozone 16 Scheme

Ai —61665.37 —-889.57 -25.07 -1.01 -054 -0.41 -1.57E-5
Afi  —61665.37 -—-832.51 -24.38 -1.00 -0.51 -0.44 0
TABLE VI

Generated Lumping

Scheme p rank (Jo) Computed lumping
U; = —0.5NO— NO; — 0.5
Kim—Cho 7 5 ' 2~ 050,
U, = 0.7INO+ NO; + 0.290;

—2NO - 3NG, — O; — OD
= —3.3NO—-2.3NO, + O; + OD

Ozonel6 8

[e2)
—N
cC C
N =

Il

U; = NO—-NO, — 265

Jacob 6 4
U, = —NO+ 2NG; + 305




366 SPORTISSE AND DJOUAD

as control parameters atel1.0 and rtok= 1.E-5, whereas for ppm, we use atol.E-7 and

rtol=1.E-5 instead. The initial conditions are modified to make the reduced model va
from the beginning of the computation by solving the exact model during the transie
phase. This is of course not very interesting in a general application, but we focus here

the accuracy of reduced models.

We use the following norms to evaluate the relative errors:

e A spatialL, norm at a fixed timestefy = nAt for the species,

m=M
) = ,| Y er(n, m?dx,

m=1

(40)

wherei, n,andmdenote respectively the index for species (I species), timedtejimesteps
of lengthAt = 900 s), and grid cells\ grid cells).d x, is the length of then grid cell and

err; is the relative error for species

Z%(n, m) — Z*%n, m)

erq(n, m) =
(0. m Z%(n, m) + atol

(41)

wherez® andz'®? are respectively the exact and reduced solutions.

The L average of these norms is

r(n) = Z ri(n).
i=1

e A spatialL, norm for the time integration on [@,]:

m=M,k=n

1
on(m = | > ern(k, m?dxp.

m,k=1

The L, average of these norms is

(gr(m) = Z ri(n).

i=1

We compute the number of correct digitd andndg given by

ri(n) = 107" gri(n) = 1079V (1 (n)) = 10740,

(42)

(43)

(44)

(gr(n)) = 10799,
(45)

All these numbers are computed at the end of the integration in the following sectic

(n= N).

Remark[CPU performance]. Let us point out once more that we do not investiga
here the CPU performance of the reduced model, because we are interested in a si
computation of the reduced model and in the accurate coupling with transport. This wo
otherwise require either a specific low-order solver for the integration of the resulti
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differential-algebraic system [7] or the preprocessed computation of the solution of
algebraic constraints (for instance, with some kind of polynomial expansion as in [21]).

This is confirmed by the following experiment: if we use LIMEX as an ODE solver fo
the exact unreduced model, we have minor differences (around 10%) in the same CPU
as is required for the reduced model. This is not surprising, because we have to solve in
cases algebraic constraints, given either by an implicit scheme or by the reducing proc

Remark[Reduction and splitting] Splitting and reduction are deeply linked for such
slow—fast systems. We refer to [30] for a deeper understanding. The key point is that u
preprocessed tables of the reduced model in a splitting context could be quite hazar
because the diffusion step removes the variables far from the reduced model, makinc
tabulation poorly accurate.

3.2. Results
3.2.1. Ozone 16 Scheme

We have used three distinct sets of initial conditions, corresponding to three types
emissions (rural, urban, regional: respectively;,@l,, and Ck) to check that we can
define the reduced model in a global way. We refer to [2] for more details.

We have first used the lumping | defined by omitting atomic oxygen OD in the lumpir
given in Table VI. The lumping with OD (lumping Il) gives similar results. The result:
are shown for the first set of initial conditions in Table VII. Good accuracy is obtained
well for the second set of initial conditions with the use of lumping I: results are given
Table VIl among brackets.

To illustrate the necessity of lumping the transport terms, we have tried to integrat
system without lumping the transport terms (for instance, in the cagel€Table VIl the
stars indicate the loss of any accuracy.

TABLE VII
Number of Correct Digits nd(i, N) and ndg(i, N)

nd (1) ndg (1) nd (Il) ndg(ll)
Air 5.54 (4.66) 5.57 (4.81) 5.54 5.57
0, 5.78 (4.66) 5.69 (4.81) 5.78 5.69
Co, 3.13(2.80) 2.93(2.82) 3.13 2.93
HNO, 4.05 (3.43) 3.58 (3.44) 4.05 3.58
RH 3.73(3.94) 3.71(3.92) 3.73 3.71
CO 4.67 (4.19) 4.66 (4.36) 4.67 4.66
NO 2.34(2.47) 2.39 (2.68) 2.34 2.39
NO, 3.79 (3.00) 3.31(2.95) 3.79 331
PAN 4.00 (2.52) 3.84 (2.62) 4.00 3.84
RCHO 4.69 (3.62) 4.66 (3.71) 4.69 4.66
O; 3.17 (2.03) 2.34(1.89) 3.17 2.34
OH 2.83(2.83) 2.96 (2.83) 2.83 2.96
HO, 2.57 (2.43) 2.77 (2.67) 2.57 2.77
RCG; 3.09 (2.70) 3.11(2.92) 3.09 311
RO, 2.66 (2.49) 2.84 (2.73) 2.66 2.84
oD 3.75(2.98) 3.31(2.93) 3.75 331

Note.Lumpings | and Il are used for Ozone 16 with the scenarip The values in
parentheses are associated with the scenagio ClI
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TABLE VIII
Number of Correct Digits nd(i, N) and ndg(i, N)

nd (1) ndg(l) nd (*) ndg (*)
Air 5.19 5.31 5.09 5.24
0O, 5.19 5.33 5.19 5.27
CO, 2.97 2.99 0.34 0.35
HNO; 3.53 3.31 0.17 0.23
RH 3.53 3.39 2.28 2.20
CcO 4.62 4.51 1.66 1.87
NO 3.15 2.63 0.04 0.04
NO, 4.33 3.44 0.08 0.16
PAN 3.62 3.31 0.31 0.27
RCHO 4.78 4.87 1.36 1.55
05 2.53 1.98 0.16 *
OH 3.36 3.11 0.63 0.56
HO, 2.65 2.58 * *
RCGO; 3.28 3.36 * *
RO, 2.72 2.67 * *
oD 4.22 3.45 0.08 0.16

Note.Scenario CJ with (I) and without ¢) lumping the transport terms for
Ozone 16.

Global results can be found in Table IX.

3.2.2. Kim—Cho Scheme

The same procedure has been applied to an inorganic kinetic scheme which has |
derived from the works of Atkinson and Lloyds [14]. The lumping | performs in an excellel
way, except for the species HONO (Table X). The study of the spatial profile of the ert
indicates that the error is mostly in the first cells (near the ground). The reason is probse
the influence of the boundary conditions terms (emissions and dry deposition), which are
as slow as assumed in our analysis. The spatial profile of the QSSA ratio for species HC
confirms that the boundary conditions remove HONO from the center manifold (Fig. 2)

We have therefore computed the lumped scheme I in all the grid cells, except in the
grid cell where we have used the exact solution. Such a model (lumping IIl) improves 1
accuracy of the reduced solutions, which seems to be logical since a part of the exact sct
is used. To prove that the hypothesis of slow transport can induce low errors, we have te
another lumped scheme by replacing for fast species the local algebraic constraint we v

TABLE IX
Number of Correct Digits nd(N) and ndg(N) for Ozone 16

N nd ndg
Cly (1) 24 3.06 2.77
Cly (1) 24 3.06 2.77
Cl, (1) 24 2.72 2.46
Cls (1) 24 3.17 2.55

Cl; (without lumping) 24 * *
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TABLE X
Number of Correct Digits nd(i, N) and ndg(i, N): Case Kim—Cho

nd (1) ndg (1) nd (1) ndg(lll) nd (V) ndg (V) nd (%) ndg (*)

HNO; 3.04 3.06 3.15 3.19 3.96 3.98 1.60 1.80
H,0, 5.48 5.50 4.19 4.14 4.19 4.14 5.52 5.51
NO 3.07 3.08 3.77 3.80 4.02 3.88 0.74 0.90
NO, 3.11 3.17 3.98 4.07 4.01 3.91 1.14 131
O 3.11 3.11 3.94 3.93 3.89 3.82 1.07 1.21
OH 2.27 2.29 2.50 2.52 3.61 351 0.85 1.00
HONO 1.78 1.79 1.94 1.95 3.46 3.34 1.77 1.77
HO, 2.34 2.36 2.52 2.54 3.82 3.74 0.59 0.73
HO,NO, 2.42 2.43 2.53 2.54 4.14 4.17 0.68 0.82
NO; 3.03 3.09 3.66 3.78 4.30 4.10 0.80 0.93
N,Os 2.63 2.68 3.25 3.31 3.75 3.77 0.98 111
SO, 4.93 511 4.88 4.69 4.67 4.61 3.34 3.62
H,SO, 2.99 3.06 3.15 3.21 3.88 3.94 141 1.63

formally under the formy (c) = 0 by the global algebraic constraipntc) + T (c) = 0. This
lumped scheme (lumping IV) gives the best results.

As before, the reduced model obtained without lumping the transport terms gives p
accuracy (Table X). Global results can be found in Table XI.

RemarlNight-time chemistry]. To prove the dependence of the reduced scheme on
photolysis, we have performed the same computation under night-time conditions. We t
therefore cancelled all kinetic rates for photolytic reactions. The dynamical behaviour
the system is then drastically modified and a hew lumping is obtained with our procedt

NOy = NO3 + N2O5, NO, = NO3 — NOs». (46)

We use then the QSSA for species OH,HBO,NO,, and NQ while N,Os is replaced with
NOy. This gives an explanation of the use of such a lumped scheme by some atmospl!
chemists.

0.015 ——————=on

0.010 |

I_QSSA

0.005

0.000 : e RN
0.0 2.0 4.0 6.0 8.0 10.0
cell number

FIG. 2. Igssafor species HONO after 20 iterations.
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TABLE Xl

Number of Correct Digits nd(N) and ndg(N): Case Kim—Cho

N nd ndg
Lumping | 20 2.60 2.33
Lumping Il 20 2.81 2.50
Lumping IV 20 3.95 3.76
Without lumping 20 1.06 1.07
TABLE XII

Number of Correct Digits nd(i, N) and ndg(i, N): Case Jacob

nd (1) ndg (1) nd (1) ndg () nd (1V) ndg (V)
ROOH 2.83 2.50 2.81 2.50 2.86 2.48
HNO; 3.12 2.02 3.08 2.03 2.92 2.00
H,0, 3.81 3.04 3.95 3.04 3.78 2.98
RH 3.38 2.47 3.35 2.47 3.29 2.37
NO 2.14 2.02 2.72 2.31 3.10 2.30
NO, 2.43 2.15 3.24 2.22 2.94 2.10
O; 2.29 2.40 3.18 2.76 2.72 2.60
OH 2.02 1.75 1.74 1.78 1.77 1.57
RGO, 2.51 1.79 1.83 1.77 1.79 1.58
HO, 2.48 1.79 1.83 1.77 1.80 1.58
TABLE Xl
Number of Correct Digits nd(i, N) and ndg(i, N): Case Jacob
without Lumping
nd (a) ndg(a) nd (b) ndg(b)
ROOH 0.65 0.79 0.04 0.33
HNO; 0.06 0.13 0.85 1.07
H,O, 0.75 0.93 2.04 2.44
RH 0.45 0.68 1.47 1.89
NO 0.28 0.48 0.19 0.36
NO, 0.25 0.46 0.33 0.52
O 0.72 0.91 0.19 0.49
OH * * *
RO, * * *
HO, * * *
TABLE XIV

Number of Correct Digits nd(N) and ndg(N): Case Jacob

N nd ndg
Lumping | 24 2.46 1.98
Lumping IlI 24 2.27 2.00
Lumping IV 24 2.25 1.82
Without lumping (a) 24 * *
Without lumping (b) 24 * *
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3.2.3. Jacob Scheme

This kinetic scheme is much more interesting because the photolytic dependence
been conserved, which leads to a nonautonomous system. However, this does not cf
the lumped species for day-time simulations.

We have used lumping | once more. Lumping techniques Il (exact solution in the fi
grid cell) and IV (global algebraic constraint) give less accurate results here. This is
contradiction with the previous computations performed for the Kim—Cho case and co
indicate that the assumption of slow transport gives here the best accuracy of the red
scheme (Table XII).

The procedures without lumping give wrong results as before (Table XlII). We ha
tested here two such procedures to prove that it does not depend on the number of Q
species but on the lack of lumping (Table XIV):

e In the first procedure (a), four species (OH, RBIO,, and NO) are computed by
QSSA relations,

¢ In the second procedure (b) two species ¢Nfdd Q@) are added to the former QSSA
species.

CONCLUSION

We have justified the use of lumping in air pollution modeling and we have propos
an algorithm for finding an appropriate lumping of species for any kinetic scheme. St
lumped species are necessary in order to apply reduction procedures. The applicatic
such techniques to three distinct inorganic schemes has given good results in 1D c
including diffusion, emissions, and dry deposition. This validates the way we include
reduced kinetic scheme in a reaction-diffusion PDE [31]. The choice of a local algebr
constraint including only chemical production and loss gives good results and the accul
remains below 1%. Using global algebraic constraints (chemical production and transp
does not seem to improve the accuracy, while computing the exact scheme at the bour
could induce improved results.

In contrast to previous works focused on numerical QSSA schemes [9, 24], such
sults indicate that reduced kinetic schemes give accurate results when they are used
appropriate way.

We do not investigate in this article the CPU performance of reduced models. We fo
only on the accuracy of such models and on some coupling strategies with diffusion
boundary conditions.

The extension to more complicated kinetic schemes in gas phase and in aqueous ph
a work in progress. Let us point out that the efficiency of such reduction procedures ba
on timescales is restricted by the number of fast timescales. An interesting approachis
a sensitivity analysis [10]. Another way we are currently investigating is the use of proy
orthogonal decompositions (POD) [1].

APPENDIX A: KINETIC SCHEMES

The kinetic schemes are given in the Tables XV-XVII. The units have already be
precised for each schemé stand for a photolytic kinetic rate.
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TABLE XV
Kinetic Scheme for Ozone 16

No. Reaction Kinetic rata(b)
1 OD+AIR+0,— O;3+AIR+0, 6.02 (-34)
2  0;+NO— NO, 1.872 (-14)
3 NO+ HO, — NO, + OH 8.235 (-12)
4  OH+ NO, — HNO; 1.1(-11)

5 NO,— NO+ OD 8.88 (-3)

6 RH+OH— RO, 2.607 (12)

7 RCHO+ OH— RCO; 1.588 11)

8 RCHO— RO, + CO+ HO, 3.18 (-6)

9 NO+ RO, - RCHO+ HO,+ NO, 7.563 (12)
10 NO+ RCO; — NO, + RO+ CO, 7.563 (12)
11 NGO, + RCO; — PAN 4.7 —-12)
12 PAN— RCO; + NO, 4.837 (-4)

Note.The kinetic rate is computed with= al1(.
The first reaction in Table XVII does not describe elementary processes and has &
actually obtained by simplifying the mechanisms:
Os+hv 22 0+ 0,
O* + H,0 2 20H
O+ 0, + M =% O3+ M
O + Nz + 03 =% 03 + N,

(A1)

TABLE XVI
Kinetic Kim—Cho Scheme

No. Reaction Kinetic rata(b)
1 NO, - NO + O 9.6 (—3)
2 0; + NO — NO, 4.3(-1)
3 0, —> 20H 2.95 (-6)
4 OH+ NO — HONO 1.63(2)
5 OH+ NO, — HNO; 2.82(2)
6 HONO— OH + NO 2.8 (-3)
7 HO, + NO — NO, + OH 2.07 (2)
8 HO, + NO, — HO,NO, 2.82 (1)
9 HO,NO, — HO, + NO, 8.48 (-2)

10 HO, + HO, — H,0, 1.2(2)

11 H,0, — 20H 8.32 (-6)

12 OH+ CO— HO, + CO 7.28 (0)

13 O; + NO, — NO3 7.96 (—4)

14 NO+ NO; — 2NO, 4.7 (-2)

15 NGO, + NO; — N,Os 4.35 (1)

16 N,Os — NO, + NO;, 7.4(-2)

17 N,Os + H,O — 2HNO; + H,O 7.43 (8)

18 NO; — 0.3NO+ 0.7NG; + 0.7 1.49 (-1)

19 OH+ 0; — HO, 1.67 (0)

20 HO, + O; — OH 3.84(2)

21 OH+ SO, — H,SO, + HO, 3.17 (1)

Note.The kinetic rate is computed with= al1(.
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TABLE XVII
Kinetic Scheme Jacob

No. Reaction Kinetic rata(b)c
1 O; — 20H J
2 OH+ RH — RO, 25(-12)0
3 HO, + NO — OH + NO, 3.7 (-12)-240
4 OH+ NO, — HNO; 1.3(-11)0
5 2HO, — H,0, 6.6 (—13)-620
6 RO, + HO, — ROOH 4.1 ¢13)-790
7 RO, + NO — NO, + HO, 4.2 (—12)-180
8 NGO, — NO + O, J
9 NO+ O; — NO, 1.8(-12) 1370

Note.The kinetic rate is computed with= a10P exp(3).

TABLE XVIII
Dry Deposition Velocity (cm s72)

Species Q NO, NO H,O, HNO;
Upep 0.6 0.6 0.1 1 2.5
TABLE XIX

Emission Factors (molecules cm3s™?)

Species q
RH 1.23E13
NO 0.7 x 252E12
NO, 0.3 x 2.52E12

20 T T

=}

0.0 10.0 200 30.0
Heure

FIG. 3. Time evolution ofE,,.
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TABLE XX
Grid in the Monodimensional Case (m)

Cell 1 2 3 4 5 6 7 8 9 10 11

Az 10 25 50 75 100 100 100 175 175 250 450

This leads to the photolytic rate:

kipH20
kipH20 + kicOp + kigNz

J=dn (A.2)

Reaction 8 is a photolytic reaction as well. The other kinetic rates are given by Arrhenil
law in the form

k(T) =aT® exp(-%), (A.3)

whereT is the temperature. We have used a constant temperktsr800 K.

APPENDIX B: BOUNDARY CONDITIONS

The dry deposition velocity is given for some species in Table XVIII.
The emission rates are given as

Ei(t) =g Eyu(1), (B.1)

whereE, (1) is plotted in Fig. 3. is specific for each emitted species. Some values ar
given for the kinetic scheme Ozone 16 in Table XIX.

APPENDIX C: PARAMETERS FOR DIFFUSION

We have used a vertical grid determined by the meteorological solver. The l&agsh
given in meters in Table XX.
The value of the turbulent diffusive coefficientds=5 m? s™*.
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